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In the space—time conservation element and solution element (CE/SE) method, the
independent marching variables used comprise not only the mesh values of the phys-
ical dependent variables but also, in contrast to a typical numerical method, the
mesh values of the spatial derivatives of these physical variables. The use of the
extra marching variables results from the need to construct the two-level, explicit
and nondissipative schemes which are at the core of the CE/SE development. It also
results from the need to minimize the stencil while maintaining accuracy. In this
paper, using the 1B-u scheme as an example, the effect of this added complication
on consistency, accuracy, and operation count is assessed. As part of this effort, an
equivalent yet more efficient form of thee-u scheme in which the independent
marching variables are the local fluxes tied to each mesh point is introduced. Also,
the intriguing relations that exist among theu. Leapfrog, and DuFort—Frankel
schemes are further explored. In addition, the redundancy of the Leapfrog, DuFort—
Frankel, and Lax schemes and the remedy for this redundancy are discussed. This
paper is concluded with the construction and evaluation of a CE/SE solver for the
inviscid Burgers equation. © 2000 Academic Press

Key Wordsspace—time; flux conservation; conservation element; solution element;
shocks.

1. INTRODUCTION

The space—-time conservation element and solution element (CE/SE) method is a
high-resolution, genuinely multidimensional, and unstructured-mesh compatible numer
method for solving conservation laws [1-21]. Since its inception in 1991 [1], the CE/S
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method has been used to obtain highly accurate numerical solutions for 1D, 2D, and 3D in
cid and viscous flow problems involving shocks, contact discontinuities, vortices, acous
waves, boundary layers, chemical reactions, and hydraulic jump. Without the aid of prec
ditioning or other special techniques, the method can be applied to both steady and unst
flows with speeds ranging from Mach numbe.00288 to 10 [16].

Development of the CE/SE method is motivated by a desire to build a general and
herent numerical framework that avoids the limitations and complications of the traditior
methods. As a result, the CE/SE method was built from ground zero using a set of de:
principles [2, 3] that facilitate simplicity, robustness, and accuracy. They include: (i) e
forcing both local and global flux conservation in space and time, with flux evaluation at
interface being an integral part of the solution procedure and requiring no interpolation
extrapolation; (ii) unifying space and time and treating them as a single entity; (iii) requirir
that a numerical scheme be built from a nondissipative core scheme such that the nume
dissipation can be effectively controlled and, as a result, will not overwhelm the phy
cal dissipation; (iv) considering the mesh values of the physical dependent variables
their spatial derivatives as independent marching variables, to be solved for simultaneot
(v) defining conservation elements and solution elements such that the simplest stencil
result; (vi) excluding the use of characteristics-based techniques (such as Riemann solv
and (vii) avoiding the use of ad hoc techniques as much as possible.

Note that the—u scheme and thee-e scheme, which are, respectively, the CE/SE solver
of a convection—diffusion equation (see Eq. (2.1)) and its pure convection version, w
described in [2] along with their Euler and Navier—Stokes extensions. However, beca
of the need to minimize the length of the manuscript, several important topics such
the consistency, accuracy, and operation count ohthe scheme were not addressed in
Chang [2]. As will be shown, because of the fact that the mesh values of both the depen
variables and its spatial derivatives are treated as independent marching variables ir
CE/SE development, the concept of consistency foathescheme is by no means trivial.
In addition to addressing several topics left untreated in Chang [2], in this paper we v
describe an equivalent yet more efficient form of#he@ scheme in which the independent
marching variables are the local fluxes tied to each mesh point. Furthermore, a CE/SE sc
for the inviscid Burgers equation will also be introduced and evaluated.

As aside trip, the intriguing relations [2] that exist amongahg, Leapfrog, and DuFort—
Frankel schemes will be further explored in this paper. In addition, the redundancy of
classical Leapfrog, DuFort—Frankel, and Lax schemes, and the remedy to this redunde
will also be discussed.

2. NUMERICAL SCHEMES

In this section, we shall (i) briefly review the 1D CE/&Eu scheme described in [2] and
then recast it in a numerically more efficient form; and (ii) describe a new CE/SE sche
for solving the inviscid Burgers equation.

2.1. The a Scheme

Consider a dimensionless form of the 1-D convection—diffusion equation, i.e.,

au au 92u
—4+a— —u——7 =0, 2.1
ot T qx  Maxe 2.1)
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wherea andu (>0) are constants. Let = x andx, = t be considered the coordinates of
a two-dimensional Euclidean spaEg. By using Gauss’ divergence theorem in the space
time E,, it can be shown that Eq. (2.1) is the differential form of the integral conservation le

]’{ h-ds=0. 2.2)
S(V)

Here (i) S(V) is the boundary of an arbitrary space—time regibin Ey, (i) h = (au —
©au/ax, u)is a current density vector iy, and (iii)ds = do n with do andn, respectively,
is the area and the outward unit normal of a surface eleme& ). Note that (i)h - ds
is the space—time flux df leaving the regiorV through the surface elemehs, and (ii) all
mathematical operations can be carried out as thé&ghere an ordinary two-dimensional
Euclidean space.

Let & denote the set of all mesh pointska (dots in Fig. 1a). There is a solution element
(SE) associated with eaglj, n) € W. Let the solution element SE n) be theinterior of
thespace—timeegion bounded by a dashed curve depicted in Fig. 1b. Itincludes a horizor
line segment, a vertical line segment, and their immediate neighborhood.

For any (x,t) € SE(j, n), u(x,t) andh(x, t) are approximated by*(x, t; j, n) and
h*(x, t; j, n), respectively. Here

u*(X, t; J, n) = uf + (U)X = X)) + (Ut —t") (2.3)

and

h*(x, t; j, n) = (@u*(x, t; j, n) — wau*(x, t; j, n)/ax, u*(x,t; j, n)). (2.4)
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FIG. 1. The space-time mesh, CEs, and SEs used in the CE/SE method. (a) The staggered space-time
(b) SE (j, n). (c) CE_(j, n). (d) CE.(j, n). (e) CE(, n) at an interior mesh poin{(n).
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Note that here that (im’j‘, (u", and(ut)’j1 are constants in S, n), (i) (x;,t") are the
coordinates of the mesh poiff, n), and (iii) Eq. (2.4) is the numerical analogue of the
definitionh = (au — wdu/ox, u).

Letu = u*(x, t; j, n) satisfy Eq. (2.1) (i.e.V - h* = 0) within SKj, n). Then one has

(U] = —a(uy)!. (2.5)

Note that because Eq. (2.3) is a first-order Taylor's expansion, the diffusion termin Eq. (2

has no counterpart in Eq. (2.5). As a result, the diffusion term has no impact on h

u*(x, t; j, n) varies with timewithin SE(j, n). However, as will be shown shortly, through its

role in the numerical analogue of Eq. (2.2), it does influence time-dependence of numer

solutions. Moreover, the legitimacy of Eq. (2.5) is supported by the results of stability a

consistency study of the-u scheme given in [1, 2] and Section 3 of this paper.
Combining Egs. (2.3) and (2.5), one has

ur(x, t; . n) = ul 4+ () [(x = xj) —at —tM], (x,t) € SEj,n). (2.6)

Thus,u} and(ux)} are the only independent marching variables associated with the me
point (j, n).

Let E; be divided into nonoverlapping rectangular regions (see Fig. 1a) referred to
conservation elements (CEs). As depicted in Figs. 1c and 1d, two nonoverlapping CEs,
CE_(j, n) and CE_(j, n), are associated with each interior mesh pgjnn) € w. On the
other hand, asingle CE, i.e., CH, n) (CE,(j, n)), is associated with a mesh po{ijt n) €
W ontheright (left) spatial boundary. The conservation elemeii§ 38 (see Fig. 1e), which
will be used only in Section 2.2, is the union of C§g, n) and CE_(j, n). Obviously, the
boundary of CE(j, n) is formed by subsets of Sk n) and SEj — 1/2, n — 1/2), while
that of CE, (], n) is formed by subsets of S£ n) and SE| + 1/2, n — 1/2). By assuming

h*.ds=0 2.7)
SV)

with V = CE, (j, n) andV = CE_(j, n), respectively, one obtains two conservation con-
ditions at each mesh poiigf, n) € W. Using these two conditions along with Egs. (2.4)
and (2.6), the two independent marching variahﬂ%and(ux)rj‘ can be expressed as the

functions of the independent marching variables at the mesh pgintsl/2, n — 1/2)
[2, pp. 299-300]; i.e.,

1 - 3 _ _
urj\ — é {(1+ v)u?iig +A- U)UTJFZE + 1 - 2 _ £) [(uj)?iﬁ - (U;{)Ti@} (28)

and
) —1 . .
U] = m{(l -9 (Ui—ifg - Ujﬁ@
FA-v?2—¢) [(1 U+ L+ v)(uj)?;ijﬂ } (2.9)
Here

1-v24+£#£0 (2.10)
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and

y def aAt def 4u At

AX
= 5T ane and (up)" def T(ux)rj‘. (2.11)

Thea—u scheme is formed by Egs. (2.8) and (2.9). Note that it is explained in [2] that t
local conservation conditions used to constructthe scheme lead to a global conservation
relation (i.e., the total flux leaving the boundary of any space—time region that is the un
of any combination of CEs will also vanish).

Also note that the expression on the right side of Eq. (2.8) can be written as a linear c
bination of the four marching variableg;iﬁ and(uj)?ﬁfg. Each combination coefficient
is a constant which can be evaluated once and used repeatedly in the marching proce
Because a pair of these coefficients differ only in sign, one concludes that it requires tt
multiplications, two additions, and one subtraction to evaludteApplying the same ar-
gument to Eq. (2.9), one concludes that it requires six multiplications, four additions, ¢
two subtractions to evaluate banfjﬁ and(u;f)rj‘ for each(j, n) € V.

In [2], it is shown that Egs. (2.8) and (2.9) can be derived from a perspective differe
from that shown above. In the following, an equivalent but numerically more efficient a
physically more revealing form of tree-u scheme will be derived from the new perspective.
Note that this “new” form is really the original form of tlee-u scheme given in [1].

In the new derivation, the locations of mesh points (dots in Fig. 2a) are identical to the
shown in Fig. 1a. However, the solution element (denoted byjSE)) associated with
any (j,n) € ¥ is defined to be thenterior of a rhombus centered &}, n) (see Fig. 2b).
On the other hand, the conservation element (denoted b§j G&) associated withij, n)
is defined to be the union of g, n) and its boundary (see Fig. 2c). Note that a side o
the rhombus is in generabt a characteristic line of Eq. (2.1). It is simply a line segment
joining two points of intersection (not marked by dots) of horizontal and vertical me:
lines. For any(x, t) € SE(j, n), u(x, t) andh(x, t), respectively, again are approximated
by u*(x, t; j, n) andh*(x, t; j, n), which are defined by Egs. (2.3) and (2.4) respectively.

Furthermore, Eq. (2.2) is approximated by

7{ h*.ds=0, (2.12)
S(V*)

whereV* is the union of any combination of CEs. Because an SE is the interior of a C
h* is not defined orB5(V*), the boundary oV *. As a result, the above surface integration
is to be carried out over a surface that is in the interioy dfand immediately adjacent to
S(V*). A necessary condition of Eq. (2.12) is that, for dtjiyn),

jq{ h* . ds= 0; (2.13)
S(CE(j.n)

i.e., the total flux leaving any conservation element is zero. It is shown in [2] that, giv
Egs. (2.3) and (2.4), Eqg. (2.13) is equivalent to Eq. (2.5). As a result, Egs. (2.5) and (2
can be assumed in the following derivation.

By applying Eq. (2.12) separately to two neighboring CEs and then to their union,
is seen that Eq. (2.12) also requires that, at the interface separating any two neighbc
CEs, the total flux entering the interface from one side must be equal to that leaving it fr
another side (Note: As a result of the definitions of the current CEs anchSEsthe two
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FIG. 2. The alternative SEs and CEs. (a) The relative positions of SEs and CEs. (p)I§E(c) CE(j, n).
(d) Interface flux conservation relations.

sides of the interface are evaluated using information from two different SEs.) Obvious
the local flux conservation conditions at all interfaces and within all CEs (i.e., Eq. (2.1:
are equivalent to the global conservation condition Eq. (2.12).

To study the interface conditions, consider g@pyn) € W. Let &P Q R Sbe the parallel-
ogram depicted in Fig. 2a. Let

JPQE | h*.ds
PQ

where (i)dspoints in the direction away from the interiorofP Q R Sand (i) the integration
is carried out over a line segment that is in the intericd®& Q R Sand immediately adjacent
to P Q. We definel (QR), J(RS), andJ (S P) similarly. With the aid of Egs. (2.4) and (2.6),
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it can be shown that

J(PQ) = - [(1+ nuf + (1 =% = &)u)]] (2.14)
—— AX

JQR = 7[<1— Ul — (L= v = &)uhHY] (2.15)
— AX

IR = ——[@+wuf — A= v+ &) U)]] (2.16)

and

B AX n 2 +yn

J(SP)=—7[(1—v)uj+(1—v + &)U (2.17)

Note that Egs. (2.14)—(2.17) are consistent with Eq. (2.13); i.e.,

J(PQ +J(QR + J(RS +J(SP =0. (2.18)
To proceed, let
1, n)"‘”—XJ(Wm, 520G, mE XJ(W%) (2.19)
and
10 m - —XJ<FTS, £, m - 73@» (2.20)

In other words, f{?(j, n) and £, (j, n), respectively, are thaormalizedfluxes leav-
ing CE (j, n) through its “future right” and “future left” edges. Similarly, (') (j,n) and
fz(')( j, n), respectively, are theormalizedfluxesenteringCE (j, n) through its “past left”
and “past right” edges. For simplicity, a normalized flux will be referred to simply as a flu
Thus, the two fluxes defined in Eq. (2.19) may be referred to as the outgoing fluxes wi
the two fluxes defined in Eq. (2.20) may be referred to as the incoming fluxes. Note t
the interface flux conservation conditions referred to earlier can now be expressed as
Fig. 2d): For any(j, n) € W,

0. =12 -12n-1/2 and £"(.n=£1Y(+1/2n-1/2). (2.21)

Because of the above relations, in Fig. 2d, a single arrow is drawn across an interfac
represent both the flux entering and the flux leaving this interface.

At this juncture, note that, with the aid of Egs. (2.14)—(2.17), (2.19), and (2.20), Egs. (2
and (2.9) can also be obtained using Eq. (2.21). In the following, Eq. (2.21) will be us
to construct an alternative scheme in whitf? (j, n) and f,°'(j, n) are the independent
marching variables.

To proceed, let

f(O) i f(') i,
f<°)<j,n)"=9f( Y n)>, f<')<j,n>d=”< .~ m) (222)
2 f2 (5, m
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q(j, n dif( 5 ) (2.23)
()
A<0>d=ef<1+v 1_"2_E> (2.24)
1—v —(1—-12-%)
and
A dﬁ(“” _(1_v2+§)>. (2.25)
1-v 1—v2+¢

Then, with the aid of the above definitions and Egs. (2.19) and (2.20), Egs. (2.14)—(2.
can be expressed as

FOx.m = A9q(. n (2.26)
and
fO, n) =a%q(j, n). (2.27)
Note that, as a result of Eq. (2.10), the inverse\dt exists; i.e.,
[AD] ™ = ;(_11_ i) . (2.28)
1-v2+E 1-v2+&
It follows from Eq. (2.27) that
ati, m = [AV] O, m). (2.29)

Because the elements of the matriee8 and [A("]~! are constant, Egs. (2.27) and (2.29)
imply that fl(') (j,n) and fz(') (j, n) can be uniquely determined in termsu?‘fand(uj)?,
and vice versa.

Substituting Eq. (2.29) into Eq. (2.26), one has

O, n) =Qf Y, n). (2.30)
where
QEAO[AO], (2.31)
Equation (2.30) can be rewritten as

2
FO0.m=> omtd(G.m. =12 (2.32)

m=1

Herewsm, £, m = 1, 2 are the elements of the matéx By using Eqgs. (2.24), (2.28), and
(2.31), one has

v(l—v?) 4+ £ _ L+v)(1—1?

1—v24¢ 7 @12 1-v24+¢& (2.332)

w11 =
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and
1-v)(1 =13 —v(l -V +E&
== - =—— - 2 2.33b
e I A gy (2.33b)
A result of Egs. (2.33a) and (2.33b) is
2
> om=1 m=12 (2.34)
=1
It follows from Egs. (2.32) and (2.34) that
10w+ 526, m = 1"G.m + 57, ), (2.35)

i.e., the sum of the outgoing fluxes is equal to that of the incoming fluxes. From Egs. (2.
and (2.20), it is easy to see that Eq. (2.35) is equivalent to Eq. (2.18).
Next, by combining Egs. (2.21) and (2.32), one obtains

£90. M) = wn 1234 —1/2.n = 1/2) + w012 1,2 +1/2.n—1/2)  (2.36)
and
£290,n) = wn 1,2 —1/2,n = 1/2) + w22 £,2(j +1/2,n—1/2). (2.37)

Equations (2.36) and (2.37) form a marching scheme in which the outgoing ﬂ‘lﬁ&eg’;, n)
and £,7(j, n) are evaluated in terms of the outgoing fluxgS’ (j — 1/2, n — 1/2) and
19 (j + 1/2,n — 1/2). This evaluation requires four multiplications and two additions
However, the operation count is reduced to two multiplications, two additions, and ©
subtraction if Eq. (2.37) in the above scheme is replaced by

£90.n = 94 —1/2n—-1/2 + .9 +1/2.n—1/2) — £9(j.n), (2.38)

which is a direct result of Egs. (2.21) and (2.35). Note that, ignoring additions and s
tractions (which can be performed much faster than multiplications), the current opera
count (i.e., two multiplications) is only one third of that (i.e., six multiplications) associate
with the scheme formed by Egs. (2.8) and (2.9).

Given the above main marching scheme, a complete marching procedure can be de
using the following information:

(a) For any(j, 0) € W, the outgoing fluxes,”(j, 0) and £,°'(j, 0) can be evaluated
using Eq. (2.26) if the the initial data? and(u;)? are given.
(b) Let the initial data be periodic; i.e., for any mesh pdint0),

94 +K,0=19G.0, =12 (2.39)
whereK is a given integer-1. Then, for any(j, n) € ¥ with n > 0, fe(o)(j, n) can be
determined in terms of the initial data by using the main marching scheme. Furthermore

induction, it can be shown that the solution is periodic; i.e., for@ny) € ¥ with n > 0,

120 +K,n= £, n). (2.40)
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(c) By eliminating(uy){ from Egs. (2.14) and (2.17) and then using Egs. (2.19)—(2.21
one has

1—1%2—¢

I (O P . . _ n
sl d+y2an-12-A-vd] (24D

H2(.n) = @+ vul +
Similarly, Egs. (2.15), (2.16), and (2.19)—(2.21) can be used to show that

§
1

fz(o)(j» n=@Q- V)UT + T—T—é

(190G -2 n-1/2) - A+ nul]. (2.42)

According to Eqg. (2.41), in the case where the spatial domain is finit& pmd is a mesh
point at the left boundaryt,”(j. n) can be evaluated in terms 6§ (j + 1/2,n — 1/2)
if the value ofu' is given. On the other hand, according to Eq. (2.4@‘5’,)(j, n) can be
evaluated in terms ofl(o)(j —1/2,n — 1/2) for a right-boundary mesh poiif, n) if the
value ofu'! is given. Thus, one concludes that the marching can proceed through all ti
levels if the values ofi} are specified at all boundary mesh points.

This section concludes with the following remarks:

(@) Thea—u scheme has the simplest stencil, i.e., a triangle with a vertex at the upj
time level and the other two vertices at the lower time level. Furthermore, the number
the independent marching variables associated with a mesh(pomte W is identical to
the number of the mesh points at ttme— 1/2)th time level that are part of the stencil. Note
that the same relation also holds for many 2D and 3D CE/SE schemes [2—4, 18, 20].

(b) Let(j, n) be an interior mesh point. According to Egs. (2.21), (2.22), and (229),
and(u;)rj1 can be determined in terms of the outgoing fluxé@(j —1/2,n—1/2) and
90 +1/2,n — 1/2).

(c) Let(j,n) be a mesh point on the right boundary. According to Egs. (2.16), (2.2C
and (2.21), one has

[+ U — A2 =& U] = 17 - 1/2,n - 1/2). (2.43)

Thus,(u;)" can be determined in terms of the outgoing fifR’(j — 1/2,n — 1/2) if the
boundary valuel! is given. Similarly, for a mesh poirg, n) on the left bounolary(u;f)rj1
can be determined in terms 6§ (j + 1/2,n — 1/2) if u" is given.

(d) As a preliminary for a discussion of the consistency ofsthe scheme in Section 3,
note that, by using Egs. (2.8) and (2.9) repeatedly, one has [1, p. 20]

1 1-
UT+1 =5 l:v + 1%_(])72:)%_} [(14— V)U'J-Ll +(1—v?— g)(u;’{)r;fl]
1-—2 n n
1T (A= vAu] — v —v? = £)(u)]]

1{ E(1+v)
N

1_vitf +E} (A=l — A= —HUN],,]  (2.44)
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and
Wit = {” * fi}iﬂ {1:5 gt - ”)%(“Wl}
+ L:;isr [+ A== D] - 5 |- For ]
{1_112125“% 1+ v)t::g(q ?+1] : (2.45)

(e) Note that the results presented here are only the specidl eafeof those presented
in[1], whereb (a constant) is the speed of the moving mesh considered there. Also, accorc
to a Fourier error analysis given in Section 5 of [1], for a givex the accuracy of tha—u
scheme g > 0) will reach a peak ifAt is chosen such that

1-v2 = V3. (2.46)

The potency of this analytical result will be numerically demonstrated in Section 4.2.

2.2. The Inviscid Burgers a=—x—8 Scheme

Consider the inviscid Burgers equation; i.e.,

ad a

2
o T oy u2/2). (2.47)

The integral conservation form of Eq. (2.47) is Eq. (2.2) with
h = (g, u). (2.48)
In the current scheme, for ariy, t) € SE(j, n), u(x, t), g(x, t), andh(x, t) are approxi-
mated byu*(x, t; j, n), g*(x, t; j, n) andh*(x, t; j, n), respectively. Here (iy*(x, t; j, n)
is defined by Eq. (2.3); (ii)
9" (X, t; j, ) = gf + (9] (X — X)) + (@]t —t") (2.49)
and (iii)
h*(x, t; j, n) = (g"(X, t; j, n), u*(x, t; j, ). (2.50)
Note that, in Eq. (2.49),

o £ W2 (90! Eulwol, and (g7 £ uluy. (2.51)

Obviously, the above expressions are the numerical analogues of the analytical expres
g =Uu?/2,3g/9x = udu/dx, anddg/at = udu/at, respectively.

Furthermore, letl = u*(x, t; j, n)andg = g*(x, t; j, n) satisfy Eq. (2.47) (i.eY - h* =
0) within SK(j, n). As a result,

U] = —(g)] = —uj Uy, (2.52)
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Thus againu} and(ux)] are the only independent marching variables at@ny) € .

Let (j, n) denote an interior mesh point. We assume that Eq. (2.7) is valid for bo
V = CE,(j,n) andV = CE_(j, n). Then, with the aid of Egs. (2.3), (2.11), (2.49), and
(2.50), one concludes that

non=1/2 At( n n71/2>

U = Ujzez2 F 1 \9i — Gjay2
_ (A1)? i
+ {(Uj)? + (uer)T:l:iﬁ + IAX [(gt)T + (gt)Tﬁﬁ} } =0. (2.53)

By summing over the above two expressions and using Egs. (2.51) and (2.52), one ha:

11 no12 ~1/2 “12  _n-1/2
UT = 5 I:U?7152 + u?+l§2 + 5?71;2 - S?+l//2i| . (254)
Here, for any(j, n) € ¥,
1
S S 1= ()] @] + 57 (2.55)
with ] d:ef(u'j‘At)/Ax. Moreover, by substituting Eg. (2.54) into any one of the two ex

pressions in Eq. (2.53) and assuming I.vjf‘)2 # 0, it can be shown that

n-1/2 n-1/2 n-1/2 n-1/2 n..n
e (atn def Yjsr2 —Uj1 = Sji10 — Sj10 T Vj U
O] = (u5h); = 5 : (2.56)
2[1—(v))7]

At this juncture, note that Eq. (2.54) can be obtained directly from the assumption tl
Eq. (2.7)isvalid folV = CE(j, n) where CE], n) is the union of CE(j, n) and CE (], n)
(see Fig. 1e). As explained in [2], the last assumption follows directly from the assumptic
that Eq. (2.7) is valid fo = CEL(j, n).

The scheme formed by Egs. (2.54) and (2.56) is referred to as the inviscid Barger
scheme. Itis a nonlinear extension of the nondissipatseheme (i.e., the inviscid version
of thea—u scheme). Such an extension generally is unstable; it must be modified to becc
a stable scheme. Note that the superscript symdiah" (uf;‘*)’j1 is introduced to remind the
reader that Eq. (2.56) is valid for the inviscid Burgarscheme only.

For the modified scheme, we impose a less stringent conservation condition, i.e.,
each(j, n) e ¥, the modified scheme satisfies Eq. (2.7) with= CE(j, n). Because this
condition is equivalent to Eq. (2.54), the latter equation is also part of the modified schel

To proceed further, consider any, n) € W. Then,(j £1/2,n —1/2) € V. Let

Uity Eu+ (At/Z)ut]?ﬁZ- (2.57)
To simplify notation, in the above and hereafter we adopt a convention that can be explai
using the expression on the right side of Eq. (2.57) as an example; i.e.,

[u+ (At/2u]TY2 = W2 + (At/2) (u) 1512
With the aid of Eq. (2.52) and &' (u? At)/Ax, Eq. (2.57) implies that

/ -1/2
Uik =[u— 2”“1]:@52 (2.58)
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Note that, by definition(j +1/2,n) ¢ Wif (j, n) € W. Thus,u}l, , is not associated with
a mesh point W.
According to Eq. (2.57)}},, can be interpreted as a first-order Taylor's approximatiol
ofuat(j +1/2,n). Thus,
(ugr)n & ike ~U 2 | AX (Wi = Uity (2.59)
x /] 4 4 AX '
is a central-difference approximation &fi/ax at (j, n), normalized by the same factor
AX/4 that appears in Eq. (2.11). Note that the superscdpis‘used to remind the reader

of the central-difference nature of the te(uﬁ*)?.
Furthermore, let

def 1, AX (Ul — U]

By their definitions,(uf(f;)rj1 and(ufj:)rj1 are two normalized numerical analoguesiaf dx
at(j, n), with one being evaluated from the right and another from the left. It can be sho
that

—

XCO
hd

~—

— 5
|

NI =

n n
(6] + (u5)): (261)
ie., (uf(*)j‘ is the simple average t()lﬂf(i)j‘ and(uf(t)?. Next, let the functioW, be defined
by (i) Ws(0, 0; o) = 0 and (ii)

4 X X[

WO(X—7 X-‘r; a) =
X[ A X[

(X4 ]+ [x=] > 0), (2.62)

wherex, , x_ anda > 0 are real variables. Note that (i) to avoid dividing by zero, in practici
a small positive number such as#0is added to the denominator in Eq. (2.62); and (ii)
Wo(X_, X4 ; ), @ honlinear weighted averagexf andx,, becomes their simple average
if « = 0or|x_| = |x.|. Furthermore, let

w def
(U ) E Wy ()", (ush) ). (2.63)
Note that the superscripts” is used to remind the reader of the weighted-average natu
of the term(u;“ﬂ’f. With the aid of the above definitions, the modified scheme, referred
as the inviscid Burgera—«<—«—8 scheme, is formed by Eq. (2.54) and

0] = (U")] 42 (U5 —ut)} ++3(uy* —ug)]. 264

Here (i)e > 0 andg > 0 are adjustable parameters; and(@}*){ is implicitly dependent
on the adjustable parameter

The expression on the right side of Eq. (2.64) contains three parts. The first part |
nondissipative terr(u";‘*)’j‘. The second part is the product ef@nd the difference between
the central-difference terrru§+)'j‘ and the nondissipative terl(ml§+)?. The third part is
the product of8 and the difference between a weighted average@)? and(ugt )? and
their simple average (see Eq. (2.61)). Numerical dissipatiertppe, i.e., that results from
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adding the second part to the right side of Eq. (2.64), generally is effective in dampi
out numerical instabilities that arise from the smooth region of a solution. However, it
less effective in suppressing numerical wiggles that often occur near a discontinuity.
the other hand, numerical dissipationeefs-type, i.e., that results from adding the third
part, is very effective in suppressing numerical wiggles. Moreover, because the condi
|(u§i)?| = |(u§t)?| more or less prevails and thus the weighted average is nearly equal
the simple average (see comment (ii) given immediately following Eq. (2.62)) in the smoc
region of the the solution, numerical dissipation introduced by the third part has very slic
effect in the smooth region.
This section is concluded with the following comments:

(a) According to numerical evidence, stability of the current solver generally requir
that (i) 0< € < 1, (ii) 8 > 0, (iii) « > 0, and (iV)[v]| < Lforall (j,n) € W.
(b) Lete = 1/2 andB = 1. Then the current scheme is formed by Eq. (2.54) and

uhHh = (u;’*)?. (2.65)

For this special case, one does not need to evalugte)] and thus the condition that
1- (u}‘)2 # 0canbeignored (see Eq. (2.56)). Moreover, the valua®the only adjustable
parameter allowed in the reduced scheme. Generally, with a choice=cf ora = 2, the
numerical dissipation introduced is sufficient to suppress numerical wiggles. Because
totally explicit and has the simplest stencil, the reduced scheme is also highly compat
with parallel computing. Furthermore, it will be shown in Section 3 that the scheme ¢
accurately capture shocks and contact discontinuities with high resolution and no numeit
oscillations.

(c) For other remarks on the parameters, andg, the reader is referred to Section 5.5
in Ref. [3].

3. CONSISTENCY AND TRUNCATION ERROR

Inthis section, the consistency and the truncation error of the scheme formed by Egs. (2
and (2.45), i.e., the circumstances under which an analytical solution may “satisfy” the ab
two discrete equations, will be investigated. As a preliminary to this investigation and
provide a basis for analyzing the numerical results given in Section 4, this section will be
with a discussion of several critical concepts.

First note that, in a typical numerical scheme, a physical variable is associated wit
single numerical variable. Thus, a system of two coupled physical equations involving t
independent physical variables generally is modeled by a system of two coupled disc
equations involving two independent numerical variables. Also, one would expect that
two coupled discrete equations are consistent with the two coupled physical equati
Thus, in general, one would not expect that two coupled discrete equations be consis
with only a single PDE.

The scheme formed by Egs. (2.44) and (2.45) is nontraditional in one key respect. E
thoughitisintroduced to model asingle PDE (i.e., Eq. (2.1)) with a single dependent varia
u, it is formed by two coupled discrete equations involving tiwdependenhumerical
variablesu’j1 and(ux)’j‘.

The numerical variablesx? and(ux)T could be “interpreted” as the numerical analogues
of u andau/ax, respectively. However, it should be understood that this interpretation
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FIG. 3. A computational domain witd > x > 0 andt > 0 (x = jAX, t = nAt).

not exact in nature and that certainly it does not invalidate the facuthahd (ux)| are
independent numerical variables. As a result, one would expect that Egs. (2.44) and (2
be consistent with a system of two PDEs, with one of them being Eq. (2.1).

Next we will discuss a general limitation on the ability of an explicit scheme to sol
an initial-value/boundary-value problem accurately. As an example, consider Eq. (Z
(n > 0) over a domain withd > x > 0 and andt > O (see Fig. 3). Let the initial data
u(x, 0) (d > x > 0) and the boundary datg0, t) andu(d, t) (t > 0) be given. Lekg and
to be the coordinates of a fixed poiRg. Letu(Py) andu(Py), respectively, denote the values
of analytical and discrete solutions 4. Since a characteristic of Eq. (2.1) is represente
by t = constant, the domain of dependencei(®,) is the union ofAB, BC, andCD. In
other wordsu(Py) is dependent on all the initial data, and the boundary datatwitHy.
Assuming that the discrete solution is generated by an explicit solver, then the domail
dependence ai(Py), contrarily, will include only a subset of the mesh points located o
‘AB, BC, andC D. As an example, consider an explicit scheme with the marching variabl
at the mesh poing¢j, n + 1) being determined by those at the mesh pointgjah) and
(j £1,n). As a result, the domain of dependenceutdl;) includes only the mesh points
on EB, BC, andCF. (Note: Here, a line segment includes its end points.) Because (i) t
mesh points that lie oA B but notE B and those that lie o@ D but notC F do not belong to
the domain of dependencewfP;), and (ii) the lengths oAE andF D are proportional to
the ratioAt/Ax if the values ofxg andty remain fixed as\t, Ax — 0, one may conclude
that, asAt, Ax — 0, thediscretesolution (considered a function @t and Ax) cannot
converge to its analytical counterpart unladg Ax — 0. It follows from Lax’s equivalence
theorem [22, p. 45] that, for an explicit solver of Eq. (2.1) with> 0, the condition that
At/AXx — 0 asAt, Ax — 0 must be required by consistency or stability or both. As al
example, for the MacCormack scheme (see Section 4), the last condition is required by
necessary stability conditionAt/(Ax)? < 0.75 (see Fig. 4). On the other hand, for the
a—u scheme (as will be shown shortly), it is required by consistency. Note that the stabi
of thea—u scheme [1, 2] is limited only by the conditidn| < 1, which does not require
thatAt — 0 asAt, AX — O.
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FIG. 4. Stability region (shaded area) of the MacCormack scheme af+heplane.

Also note that, for a problem with an unbounded domain and a periodic initial conditio
a discussion similar to that given above is given in [1, p. 55].

Furthermore, as a result of above considerations, and the fact that the analytical dor
of dependence can be matched by the domain of dependence of an implicit scheme,
concludes that, for an initial-value/boundary-value problem, an explicit solver is genera
not as accurate as an implicit solver. Generally, an explicit solver should not be used to s
such a problem except for the special circumstance in which errors caused by neglec
certain initial/boundary data are relatively small. The factors that help achieve the ab
special circumstance include: (i) a small valueAdf/ Ax, (ii) a small time rate of change
of boundary data, and (iii) a small contribution of the diffusion terms relative to that of tt
convection terms.

On the other hand, for a pure initial-value problem, such as a problem involving Eq. (2
with © = 0, an implicit solver generally is not as accurate as an explicit solver. This
because the domain of dependence of the former solver may be far greater than the anal
domain of dependence and, as a result, an implicit solution tends to be contaminate
extraneous information.

For simplicity, the consistency of the finite discrete equations, Eqgs. (2.44) and (2.45), v
be investigated fully here only for the special case with 0 andi > 0. For the general
case, the reader is referred to Section 6 in [1].

Because (iy = 0 if a = 0; and (ii) (u;)rj‘ = (Ax/4)(uX)T, for the special case under
consideration, Egs. (2.44) and (2.45) reduce to

U?+1 — U? . { 2 U?+1 + U?_l — 2Urj1 E-1 . (Ux)?+1 - (Ux)?_l

At 1+& (AX)2 E+1 2AX } =0 @1

and

LT = ] {2(;—1) (U414 QT3 — 2"

At E+12 (AX)2
8 uflyg —ul_g — 2A% (U] } _
TEre (Ax? =0 52

respectively. Letj (X, t) andgy(x, t) be two smooth functions of andt. If u’j1 = Qu(Xj, t")
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and(ux)| = dz(x;j, t") form a solution to Egs. (3.1) and (3.2), then with the aid of Taylor’s
formula with reminder, one has

8q1 82q1 & — 10 Bql N
{W —Mw} —Mm&(%— ™ + O(At, (AX)9) =0 (3-3)

and

001 " (AX)? — 4 At 920 B (AX)? 3%
b2 X 8 ax2 6 0x3

1 [4duAt 2 /30 2\
+ 16“( — t Ax) <8t + O(At, (AX) )) =0. (3.4)

Note that, to emphasize the fact tlun@tand(ux)’j‘ are two independent marching variables,
here new symbolg; andg, are introduced to denote the functions that are the analytic
counterparts oﬁ’j‘ and(ux)rj‘, respectively. Also, it should be understood that in Egs. (3.3
and (3.4)g; andg, and their derivatives represent the values at the mesh @oinj.
Equations (3.1) and (3.2) can be considered the numerical approximations to the PL

— —u——7> =0 and qz—a—=o, (3.5

respectively. According to Egs. (3.3) and (3.4), the truncation errors of these approximati
are the terms after the brackets in Egs. (3.3) and (3.4)giahdqg, uniformly satisfy the
PDEs givenin Eg. (3.5). Then obviously the firstterm after the brackets in Eq. (3.3) vanist
As aresult, it is easy to see that the truncation errors that appear in Egs. (3.3) ané (3.4
0 in the limit of At, Ax — 0 if the mesh is refined in such a manner tdy Ax — 0
as At, Ax — 0. In other words, assuming the above rule of mesh refinement, Egs. (3
and (3.2) are consistent with the system of the PDEs given in Eq. (3.5). Moreover, (
can conclude that the above truncation errors are second ordex ifithe rule of mesh
refinement is such thgtremains bounded asx — 0 andAt — 0.

For the more general case in whigh# 0 andu > 0, itis shown in Section 6 of [1] that
Egs. (2.44) and (2.45) are consistent with the system of the PDEs

o _dq; 3%q: g1

—4+a——-—u—>=0 and ——=0. 3.6

at Tqx Mo %~ 5% (36
Also the truncation errors> 0 in the limit of At, Ax — 0, assuming the mesh is refined
in such a manner thatt/Ax — 0 asAt, AXx - 0

Note that Eq. (2.1) reduces to

du  du

— — =0 3.7
at +a8x 3.7)

whenu = 0. For this special case, it is shown in Section 6 of [1] that Egs. (2.44) and (2.4
are consistent with the system of the PDEs

d d
ooy, oo _

0 3.8
at X (3:8)
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and

0 90 d 90 d (oo 0

— -— | —a— - — —|—+a—| =0. 3.9

at(q2 8x> ax(q2 ax ) T ax ot T %ax (3.9)
Because, in this case, the truncation errors are all second order@amd At, consistency
does not require that the mesh be refined in such a mannexthai — 0asAt, Ax — 0.
Obviously, this conclusion is consistent with the fact that Eq. (3.7) is associated with a p
initial-value problem.

Finally, note that the consistency and truncation error ofathescheme are discussed
in Section 7 of [8].

4. NUMERICAL EVALUATION

The accuracy of the numerical schemes described in Section 2 is evaluated hert
comparing their numerical results with the exact solutions and the results generatec
other traditional schemes.

4.1. The a Scheme

Thea scheme is the special case of Hig. scheme withu = 0. It is the only two-level,
explicit, and nondissipative solver of Eq. (3.7) known to the authors. As a matter of fa
it is shown in [2] that the two amplification factors of thescheme are identical to those
of the “decoupled” Leapfrog scheme. Note that the ordinary three-level Leapfrog sche
[23, p. 100] is formed by two completely decoupled schemes. Because these two decou
schemes are identical in structure, any one of them is referred to as the decoupled Leay
scheme. Using the mesh depicted in Fig. 1a, the decoupled scheme can be expressed :
Eq. (A.9)in[1])

1 n-1/2 n-1/2
ul=ult+ (u]-_lf2 - uj+1f2) . (4.1)

Obviously, like thea scheme, the mesh points associated with the decoupled Leapfr
scheme also are staggered in space—-time. However, unlike the twaleebleme, the
three-level scheme Eq. (4.1) needs to be supplemented by a two-level starting schem
this paper, the starting scheme used is
1/2 0 0 0
pra— ) us — u:
i J j+1/2 i-1/2

a =0 4.2
At)2 + AX (4.2)

u

In the following, the accuracy and the operation count oftlseheme will be compared
againstthose ofthe decoupled Leapfrog scheme and the Lax—Wendroff scheme. Note th:
three schemes under comparison (excluding the starting scheme Eq. (4.2)) are all sec
order accurate in space and time. Using the mesh depicted in Fig. 5, the Lax—Wend
scheme can be expressed as

il _ vV +1)

12
U] _Tuj_l+(1_v )UT"‘

vV —1 aAt’
¥un_l’ v d=ef .
2 ] AX’

(4.3)

In Fig. 5, for a reason which will become clear shortly, the spatial mesh interval and 1
time-step size are denoted by the new symiotsand At’, respectively.
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j-2 j-1 j j+1 j+2
n+1
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! o
At'
* n-1
[ AX 1t A X'

FIG.5. Aregular space-time mesh.

Consider a model problem involving Eq. (3.7). Letdi}= 0.5 and (i)
u(x, 0) =sin(zx), —oo < X < 00 (4.4)
Then the exact solution is
u(x,t) =sin(@(x — 0.5t)), —oo<x<oo; t>0. (4.5)

Obviously, the exact solution represents a wave motion with the waveleéngt® and the
periodT = 4. Thus, one may limit the computational domairtb < x < 1 andt > 0 and
use the periodic boundary condition. Furthermore, it will be assumewfhatu(xj ,0)
and(u)? = %(x;, 0).

Let (i) AXx =0.04 andAt =10/131 (i.e.,v = 125/131= 0.954) for thea scheme
and the decoupled Leapfrog scheme; and Ai¥' = 0.02 and At’ =5/131 (i.e.,v =
125/131 = 0.954) for the Lax—Wendroff scheme. Let

n def

| = urj‘ —u(xj, t"). (4.6)

Given the above definitions, the error distributions for the above three schemeslét—
2.5T are depicted in Fig. 6a. Note that totally there are (i) 51 data points fa stheme
and also for the Leapfrog scheme and (ii) 101 data points for the Lax—Wendroff schel
From the results shown, one concludes that the errors aftbkeme and the Lax—Wendroff
scheme vary smoothly in the-direction and they almost fall on each other at all spatia
locations where the mesh points of these two schemes coincide. On the other hand
errors of the decoupled Leapfrog scheme fluctuate rather erratically from one mesh p
to another neighboring mesh point. Even though the mean vali&€|cdtt = 10 for the
decoupled Leapfrog scheme is only about 8% higher than those fargbleeme and the
Lax—Wendroff scheme, the maximum |@f| for the first scheme is more than twice those
for the last two schemes.

Assuming the same values af, At, Ax’, andAt’, the error distributions for the above
three schemes &t= 100 are depicted in Fig. 6b. At this time, the erratic behavior of th
errors of the decoupled Leapfrog scheme is much less pronounced and, as a result, the:
of all three schemes are more or less identical at all spatial locations where the mesh p
of these schemes coincide. It appears that the erratic behavior of the errors of the decol
Leapfrog scheme at the earlier time is due to the errors introduced by the starting sch
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(which has only first-order accuracy in time). Because, as time increases, these initial er
will eventually become negligible compared with other numerical errors accumulated o
time, the total errors will behave in a less erratic manner as time increases.

It has been shown that, assuming’ = Ax/2 andAt’ = At/2, thea scheme and the
Lax—Wendroff scheme have almostidentical accuracy. Furthermore, assuming that the
values ofAx and At are used, tha scheme and the decoupled Leapfrog scheme, on tt
average, have more or less identical accuracy, albeit the latter scheme may have n
higher maximal local error whetnis small. In the following, the above three schemes will
be further judged on the basis of their operation counts.

According to Eq. (4.1) and the comments made following Eq. (2.38), for the decoupl
Leapfrog scheme and tleescheme, at each time level these schemes require, respective
oneandtwo multiplications per mesh point to advance the numerical solution by the tin
interval At/2 (i.e., to advance by a single marching step). On the other hand, accord
to Eq. (4.3) and Fig. 5, for the Lax—Wendroff scheme, at each time level it thkes
multiplications per mesh point to advance by the time intefwa(i.e., to advance by a single
marching step in the Lax—Wendroff scheme). Here, it is again assumed that (i) additi
and subtractions, which can be performed much faster than multiplications, are ignore
operation counts; and (ii) the three combination coefficients on the right side of Eq. (4
are to be evaluated once and stored for repeated later calculations. Because the num
results shown in Fig. 6 are generated assumind(i)= At/2 and (i) AX' = Ax/2 (i.e.,
the number of mesh points per time level used in the Lax—Wendroff scheme is twice t
used in thea scheme and the decoupled Leapfrog scheme), one concludes that the L
Wendroff scheme can achieve the same accuracy as thata$tieme only at the expense
of an operation count that is three times that of the latter scheme.

The section is concluded with the following comments:

(a) A solution of the ordinary Leapfrog scheme is formed by two completely decoupl
solutions. As time increases, these solutions will gradually deviate from the correct solut
and, because of their decoupled nature, from each other. Thus, one of these two solutic
completely redundant. For this reason, using the ordinary Leapfrog scheme instead of

a S el o SOTTS mquare e p pchems
dillx the Lax-WereioH echams h dediac i Lo dandno® sohedma
girder the decoupled Leapirop soheme e i Sossudbid Lo i) #=eame

i = 1 t = 10

FIG. 6. The error distributions of tha scheme, the decoupled Leapfrog scheme, and the Lax—Wendro
schemgAx = 0.04, At = 10/131 Ax’ = 0.02, andAt’ = 5/131).
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decoupled Leapfrog scheme is pointless, i.e., it simply doubles computer cost without
gain in accuracy. The same observation is also applicable to other schemes that hav
same decoupled nature (e.g., the DuFort—Frankel scheme and the Lax scheme).

(b) Eventhough tha scheme and the decoupled Leapfrog scheme have the same anr
fication factors, the former scheme has more compact stencil than the latter scheme.
turns out, this compactness and the fact that the mesh values of both the dependent va
and its spatial derivative are carried at each mesh point make it much easier to cons
robust and accurate generalizations ofdlecheme.

4.2. Theu Scheme

The u scheme is the special case of ther scheme witha = 0. It is shown in [1] that
the two-amplification factors of the scheme are identical to those of the “decoupled’
DuFort—Frankel scheme. Using the mesh depicted in Fig. 1a, the decoupled scheme c:
expressed as (see Eq. (A.9)in [2])

1-& & —1/2 —1/2
ut = 1~|—§u? 1y l+§(u?_1f2+u';+lf2). 4.7

Obviously, like theu scheme, the mesh points associated with the decoupled DuFo
Frankel scheme also are staggered in space—time. However, unlike the two-$eteme,
the three-level scheme Eq. (4.7) needs to be supplemented by a two-level starting sch
In this paper, for thénterior mesh pointgj, 1/2), the starting scheme used is
[ M“?+1/2 1o — 207 _

At/2 (AX/2)?

u
(4.8)

In the following, the accuracy and the operation count ofitlseheme will be compared
against those of the decoupled DuFort—Frankel scheme and the forward-time central-s
(FTCS) scheme. Using the mesh depicted in Fig. 5, the FTCS scheme can be express

u = Ut o (W Ut - 20t o Epatax)?). (4.9)

Consider a model problem [24] that is defined by (i) the PDE

au 32u

ot M = 0, (4.10)

wherep = 2.17 x 1074 (i) the initial condition ¢ = 0)

40 ifx =0;
- {o if 0 < x < 0.04 (4.11)
and the boundary condition & 0)
40 ifx=0;
- {o if x = 0.04, (412)

Note that the exact solution of this problem is given in [24]. Also note that, as a result
the above definitions, (i) the computational domain is limited to ® < 0.04 andt > O;
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and (ii) it is assumed that] = 40 if (], n) is on the left boundaryq= 0) andu? = O if
(j, n) is on the right boundaryx(= 0.04). Moreover, the reader is reminded that, for the
scheme(ux)rj1 at any boundary mesh poigt, n) is a marching variable to be evaluated.

In the numerical simulation involving the scheme and the decoupled DuFort—Franke
scheme, again the staggered mesh depicted in Fig. 1a is used. xg&(i) Ax andt” =
nAt; and (i) Ax and an integed be chosen such thag = 0.04. Furthermore, itis assumed
that: (i)forn=0,1,2,...,(j,n) e Vifandonlyif j = 1/2,3/2,..., (J — 1/2); and (ii)
forn=1/2,3/2,...,(j,nyeWifandonlyifj =0,1,2,..., J. As a result, the origin
(0,0) ¢ W. Thus, one can safely assumfe= (ux)) =0forj =1/2,1,3/2,2,...,(J —
1/2). Note that: (i) to apply the starting scheme Eq. (4U§>),must be specified at =
1/2,1,3/2,2, ..., (3 — 1/2),notonly atthose values ¢fwith (j, 0) € ¥; and (ii) because
the initial value has a spurious jump at the origin, the fact that one does not need to spe
initial value there generally results in more accurate numerical results.

On the other hand, the regular mesh depicted in Fig. 5 is used in the numerical simula
involving the FTCS scheme. In this case, it is assumedsthat jAx’, t" = nAt’ and
Xy = 0.04 with J’ being an integer. According to Fig. 5 and Eq. (4.9), in the case of th
FTCS scheme, the origin must be a mesh point. Thus, the numerical initial conditions
defined byug = 40 andu =0, j =1,2,..., J".

LetAx = At = 0.001andAx’ = At’ = 0.0005. Thenthe error distributions of the above
three schemes &t= 0.18 are those depicted in Fig. 7a. On the other hand, the distributio
att = 1.08 are those depicted in Fig. 7b. It is seen that, for beth0.18 andt = 1.08, the
errors of theu scheme and the decoupled DuFort—Frankel scheme are almost identice
all mesh points, and they are smaller than those of the FTCS scheme at most mesh pc
Note that for the current dissipative cas@decays withu{ as time increases.

Note that for the FTCS scheme (see Eq. (4.9)), it requires one multiplication per me
point to advance by the time intervalt’ (i.e., to advance by one marching step). On the
other hand, for the decoupled DuFort—Frankel scheme and sitheme (see Eq. (4.7) and
the comments made following Eq. (2.38)), it requires two multiplications per mesh po
to advance by the time intervalt/2 (i.e., to advance by one marching step). Because (
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FIG.7. Theerror distributions of the scheme, the decoupled DuFort—Frankel scheme, and the FTCS schel
(Ax = At = 0.001, andAx’ = At’ = 0.0005.
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At’ = At/2 and (i) AX' = Ax/2 (i.e., the number of mesh points per time level used i
the FTCS scheme is twice that used in thecheme and the decoupled DuFort—Franke
scheme), one concludes that the results shown in each of Figs. 7a and 7b are obtainec
approximately the same operation count for each of the three schemes considered.

This section is ended with a numerical evaluation of an analytical prediction given earl
i.e., for a givenAx, the accuracy of the—u scheme will reach a peak it are chosen
such that Eq. (2.46) is satisfied. Obviously, for the current ease0, Eq. (2.46) reduces
to & = 1/+/3. With the aid of Eq. (2.11), the last expression implies that

A 2
At = At % (A%
4./3u

Note that, in [1], the same Fourier error analysis from which Eq. (2.46) was deriv
also was used to study the Leapfrog/DuFort—Frankel scheme—a scheme which reduc
the ordinary Leapfrog scheme when= 0 and to the ordinary DuFort—Frankel scheme
whena = 0. By accounting for the fact that a regular mesh was used in that study a
for the differences in notations (such as the fact thatand At used in the study of the
Leapfrog/DuFort—Frankel scheme correspond\tg/2 andAt/2 in this paper), one may
infer from Eq. (5.68) of [1] that the accuracy of the decoupled DuFort—Frankel scheme &
will reach a peak ifAt = Aty.

Let (i) Ax = 0.004, (i) u = 2.17 x 10~* and (iii) At = Aty = 0.0106424. Then the
error distributions of thew scheme and the decoupled DuFort—Frankel schente=at
17Aty = 0.1809 are those depicted in Fig. 8a. On the other hand, the distributions
t = 101Aty = 1.0749 are those depicted in Fig. 8b. Itis seen thatthe error distributions of t
above two schemes again are almost identical at all mesh points. Furthermore, a compa
of the results shown in Figs. 7a—8b implies that, by choogihg- Aty, it is possible to im-
prove the accuracy of thescheme and the decoupled DuFort—Frankel scheme while sim
taneously using much biggerx andAt. This “strange” phenomenon can be explained by :
fact established by numerical experiments (i.e., witlandAx being related by Eq. (4.13)),
the above two schemes effectively achieve an accuracy which is fourth order in

(a=0). (4.13)

a square: the n scheme b square: the p scheme
delta: the decoupled DuFort-Frankel scheme delta: the decoupled DuFort-Frankef scheme
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t = 17Aty ~ 0.1879

t = 101A¢y = 1.0749

FIG. 8. The error distributions of thg scheme and the decoupled DuFort—Frankel scheime= 0.004,
At = Aty ~ 0.0106424.
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At this junction, note that, according to a discussion given in Section 3, for an initie
value/boundary-value problem, an explicit solver is generally not as accurate as an imp
solver. As a result, two implicit schemes for solving Eq. (2.1) have been constructed us
the CE/SE method [9, 10]. In the inviscid case, both schemes reduce to the current exr
a scheme. On the other hand, in the pure diffusion case, these two schemes also be
the same scheme and their principal amplification factor is identical to the amplificati
factor of the implicit Crank—Nicolson scheme. As a result, in the pure diffusion case, t
Crank—Nicolson scheme and the two CE/SE implicit schemes are of similar accuracy |[!

4.3. The Inviscid Burgers a=—x—f8 Scheme

Consider the hyperbolic problem defined by Eq. (2.47) and the initial condition

1 ifx <0
= ’ 4.14
uex. 0) {o ifx > 0. (4.14)
The weak solution to this problem is [23, p. 142]
1 ifx—t/2<0;
= 4.1
ux. o {o if X —t/2 > 0: (4.15)

i.e., the discontinuity propagates in tkalirection with a speed of /2.

The above problem is solved by the simplest inviscid Burgeesa—8 scheme (i.e., that
formed by Egs. (2.54) and (2.65) with= 1). The computational domair-@ < x < 2and
0 <) is covered by a space—time staggered mesh with= 0.1. The locations of mesh
points (dots in Fig. 1(a)) are determined by the assumptiong; & j Ax andt" = nAt,
and (ii) (j, n) € W if and only if j + n is a half-integer. With) £'2/Ax = 20, the initial
conditions used are:

u) =u(x;,0) and (u)? =0, (4.16)
where j =-3+1/2,-3+3/2,...,-1/2,1/2,...,3 —3/2,J —1/2. The boundary
conditions used are the simple extrapolation conditions

ul, =ull, and (u0l; = (w015, (4.17)

wheren = 1/2,3/2,5/2, .. ..

The numerical solutions obtainedtat 1.8 with At = 0.1 (i.e., the maximal Courant
numberv,, = 1.0) andAt = 0.06 (i.e.,vy, = 0.6) are shown in Fig. 9a. It is seen that the
current very simple shock-capturing scheme can generate nearly perfect solutions. For
solution shown in Fig. 9a, the shock is resolved almost by a single mesh interval and
numerical wiggles are detected in its vicinity. Obviously, the best shock resolution occi
whenvy, = 1.0.

The numerical solutions obtainedtat 4.2 with At = 0.1 andAt = 0.06 are shown in
Fig. 9b. At this time, the shock is locatedat 2.1;i.e., it has just exited the computational
domain. Thus, the exact solutionts= 1 within this domain. The maximum magnitude
of the errors in the numerically computed valuesuofs less than 10* (1073) in the
caseAt = 0.1 (At = 0.06). Thus, one concludes that the simple extrapolation conditior
Eq. (4.17) are excellent nonreflecting boundary conditions if they are applied in conjunct
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square: At=0.1 b square: At=0.1
12 delta: At=0.06 1.2 delta: At=0.06
11 solid line: Exact sol. solid line: Exact sol.

t=138 t=4.2

FIG. 9. Comparisons of the CE/SE solutions of the inviscid Burgers equation with the exact solution.

with the CE/SE method. This conclusion is also consistent with the theoretical rest
presented in [11].

At this juncture, note that, for eaclj, 0) € W, the line segment joining the two space—
time points(x; & Ax/2; 0) is part of SKj, 0). As a result, the space—time flux passing
through the above line segment can be evaluated using either the exact or the nume
initial condition. The resulting two values are identical if and only if

Xj+AX/2 Xj+AxX/2
/ u*(x,0; j,0)dx =/ u(x, 0)dx. (4.18)
Xj—AX/2 Xj—AX/2

Because of its flux-based nature, accuracy of the CE/SE method generally will su
(particularly if the exact initial condition is not continuous) if the numerical initial conditior
specified does not satisfy Eq. (4.18). Obviously, the numerical initial condition used h
does satisfy Eq. (4.18). Note that, in c&$e0) € W for j =0, 1, £2, ..., +J, EqQ. (4.18)

is satisfied by the initial condition: ()9 = u(x;, 0) and(u,){ = 0if j # 0; and (ii)ug =
1/2 and(uy)$ = ¢ wherec is an arbitrary constant.

5. CONCLUSIONS

Many important topics left untreated in [2], such as the consistency, accuracy, and op
tion count of thea—u scheme, were discussed in this paper. As part of these discussions
equivalent yet numerically more efficient and physically more appealing form @&-the
scheme was introduced. The key conclusions of the discussions include the following:

(a) Itis shown that the—u scheme is consistent with a system of two PDEs involvin
two dependent variables, with one of the PDEs being Eq. (2.1). This result correspo
closely to the fact that, for eadlj, n) € ¥, thea—u scheme is formed by two equations
involving two independentinknownsu' and (ux)7.

(b) It is shown that asAt, Ax — 0, a discrete solution of aaxplicit solver of the
convection—diffusion equation Eq. (2.1) witlh > O cannot converge to its analytical
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counterpart unless the mesh is refined in such a manneathiatx — 0 asAt, Ax — 0.

As aresult, Lax’s equivalence theorem implies that, for such a solver, convergence req
that the above rule of mesh refinement be imposed through consistency or stability or b
For many explicit schemes, such as the MacCormack scheme, the above rule of mes
finement is imposed through a stability condition. On the other hand, fa-thescheme,

it is imposed as a requirement of consistency.

(c) Itis shown that, in spite of the fact that both schemes are second order in accur
thea scheme (i.e., tha—u scheme withu = 0) may achieve the same accuracy as that o
the Lax—Wendroff scheme with an operation count being only one-third of that of the lat
scheme.

(d) Excluding its two-level starting scheme, the ordinary three-level Leapfrog schei
is formed by two completely identical and decoupled subschemes. Any one of these ¢
schemes is referred to as the decoupled Leapfrog scheme. The amplification factors o
decoupled Leapfrog scheme are identical to those odi s@heme. However, the actual ac-
curacy of the former scheme is degraded by the first-order errors introduced by its star
scheme. As a result, the decoupled Leapfrog scheme is less accurate thachleene, a
fact that is most prominent in the earlier time during which the errors of the former schel
fluctuate erratically from one mesh point to another.

(e) Asinthe case of the Leapfrog scheme, any one of the two completely identical ¢
decoupled subschemes that form the ordinary three-level DuFort—Frankel scheme is refe
to as the decoupled DuFort—Frankel scheme. The amplification factors of the decou
DuFort—Frankel scheme are identical to those ofitheeheme (i.e., tha—u scheme with
a = 0). Assuming that the same valuesof andAt are used, it is shown that the decoupled
DuFort—Frankel scheme and thescheme have (i) the same operation count, and (i
almost the same accuracy. Note that because of the effect of the viscosity, the first-o
errorsintroduced by the starting scheme associated with the DuFort—Frankel scheme ra
become negligible compared with other errors accumulated over time.

(f) Assuming that the spatial mesh intervals and time-step sizes are chosen such
the total operation counts are equal among them, it is shown that the FTCS scheme is
accurate than the scheme and the decoupled DuFort—Frankel scheme.

(g) With At and Ax being related by Eq. (4.13), both the decoupled DuFort—Frank
scheme and the scheme effectively achieve an accuracy that is fourth-ordanin

(h) Thea— scheme described in [2] was extended to become a family of solvers for t
inviscid Burgers equations. It was shown that (i) the simplest among these solversis cap
of generating nearly perfect shock solutions for the inviscid Burgers equation; and (ii) 1
simple extrapolation conditions Eq. (4.17) are excellent nonreflecting boundary conditic
if they are applied in conjunction with the CE/SE method.
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